A Product Formula for Spherical Representations of a Group of Automorphisms of a Homogeneous Tree, Ii

نویسندگان

  • DONALD I. CARTWRIGHT
  • GABRIELLA KUHN
چکیده

Let G = Aut(T ) be the group of automorphisms of a homogeneous tree T and let π be the tensor product of two spherical irreducible unitary representations of G. We complete the explicit decomposition of π commenced in part I of this paper, by describing the discrete series representations of G which appear as subrepresentations of π.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Product Formula for Spherical Representations of a Group of Automorphisms of a Homogeneous Tree, I

Let G = Aut(T ) be the group of automorphisms of a homogeneous tree T , and let Γ be a lattice subgroup of G. Let π be the tensor product of two spherical irreducible unitary representations of G. We give an explicit decomposition of the restriction of π to Γ. We also describe the spherical component of π explicitly, and this decomposition is interpreted as a multiplication formula for associat...

متن کامل

Two-wavelet constants for square integrable representations of G/H

In this paper we introduce two-wavelet constants for square integrable representations of homogeneous spaces. We establish the orthogonality relations fo...

متن کامل

The Representations and Positive Type Functions of Some Homogenous Spaces

‎For a homogeneous spaces ‎$‎G/H‎$‎, we show that the convolution on $L^1(G/H)$ is the same as convolution on $L^1(K)$, where $G$ is semidirect product of a closed subgroup $H$ and a normal subgroup $K $ of ‎$‎G‎$‎. ‎Also we prove that there exists a one to one correspondence between nondegenerat $ast$-representations of $L^1(G/H)$ and representations of ...

متن کامل

Representations of Double Coset Lie Hypergroups

We study the double cosets of a Lie group by a compact Lie subgroup. We show that a Weil formula holds for double coset Lie hypergroups and show that certain representations of the Lie group lift to representations of the double coset Lie hypergroup. We characterize smooth (analytic) vectors of these lifted representations.

متن کامل

Deformation of Outer Representations of Galois Group II

This paper is devoted to deformation theory of "anabelian" representations of the absolute Galois group landing in outer automorphism group of the algebraic fundamental group of a hyperbolic smooth curve defined over a number-field. In the first part of this paper, we obtained several universal deformations for Lie-algebra versions of the above representation using the Schlessinger criteria for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001